Stéphane Breuils, Yukiko Kenmochi, Akihiro Sugimoto
Digitized rotation
Inverse digitized rotation
\( \theta = \frac{\pi}{4} \)
Out : double points,
holes !
Input image
New bijective rotations from bijective digitized reflections
Vectors
Multivectors \( \mathbf{a},\mathbf{b} \)
Geometric product
\(\mathbf{a} \mathbf{b} = \mathbf{a}\cdot \mathbf{b} + \mathbf{a} \wedge \mathbf{b} \)
\( \mathbf{a}\mathbf{b} = (a_1 \mathbf{e}_1 + a_2\mathbf{e}_2) ( b_1\mathbf{e}_1 + b_2\mathbf{e}_2) = (a_1b_1 + a_2b_2) + (a_1b_2 - a_2b_1) \color{red}\mathbf{e}_{12} \)
if \( \mathbf{a},\mathbf{b} \in \mathbb{R}^2 \)
\( {\color{green}\mathbf{y}} = -{\color{blue}\mathbf{m}} {\color{red}\mathbf{x}} {\color{blue}\mathbf{m}^{-1}} \)
\( {\color{green}\mathbf{y}} = \mathbf{Q} {\color{red}\mathbf{x}} \mathbf{Q}^{-1} \)
\( \mathbf{Q} = \color{blue}\mathbf{m}\mathbf{n} \)
\( \mathbf{Q} = \color{blue}\mathbf{m}\mathbf{n} = \cos{\frac{\theta}{2}} + \sin{\frac{\theta}{2}} \mathbf{e}_{12} \) \( (2D)\)
\( \bullet \) defined for any dimension
\( \bullet \) generic and easy to manipulate
Knowing \(\mathbf{m} \) normal vector to the line of reflection, reflection of \( \mathbf{x} \) :
\( \mathbf{y} = -\mathbf{m} \mathbf{x} \mathbf{m}^{-1} \)
Product \(\mathbf{m} \mathbf{n} \), rotation of \( \mathbf{x} \) :
\( \bullet \) Reflections \( \mathcal{U}^{\mathbf{m}} \)
\( \bullet \) Digitized operator \( \mathcal{D} \)
\( \bullet \) Digitized reflection \( \mathcal{R}^{\mathbf{m}}\)
\( \bullet \) Equivalent to the Voronoi cell definition
\( \mathcal{C}_{1}(\mathbf{0})\)
\( \mathcal{C}_{1}(\mathbf{t})\)
\( \mathbf{t} = 3 \mathbf{e}_1 + 2 \mathbf{e}_2\)
\( \bullet \) Equivalent to the Voronoi cell definition
\(\mathcal{C}_{\frac{\mathbf{m}}{||\mathbf{m} || }} (\mathbf{0}) \)
\( \bullet \) Definition
\( \mathcal{C}_{1}(\mathbf{0}) \)
\( \mathcal{C}_{1}(\mathbf{0}) \)
\( \bullet \) Bijectivity condition
\( \mathcal{C}_{\frac{\mathbf{m}}{||\mathbf{m} ||}}(\mathbf{0}) \)
\( \mathcal{C}_{1}(\mathbf{0}) \)
\( \mathcal{C}_{\frac{\mathbf{m}}{||\mathbf{m} ||}}(\mathbf{0}) \)
\( \mathcal{C}_{1}(\mathbf{0}) \)
\( \mathcal{C}_{1}(\mathbf{0}) \)
\( \mathcal{C}_{1}(\mathbf{0}) \)
Bijective reflection
Non-bijective reflection
\( m_b \) : digitized bijective reflection
\(\Leftrightarrow \) \(-\mathbf{e}_1 m_b \mathbf{e}_1^{-1}\) is also a bijective digitized reflection
\(\Leftrightarrow \) \(-\mathbf{e}_1 (a \mathbf{e}_1 + b \mathbf{e}_1) \mathbf{e}_1^{-1} \) is also a bijective digitized reflection
\(\Leftrightarrow \mathbf{e}_1 \mathbf{m}_b \mathbf{e}_1^{-1} \mathbf{x} \mathbf{e}_1 \mathbf{m}_b^{-1} \mathbf{e}_1^{-1} \)
\(\Leftrightarrow (\mathbf{e}_1 \mathbf{m}_b) (\mathbf{e}_1^{-1} \mathbf{x} \mathbf{e}_1) (\mathbf{e}_1 \mathbf{m}_b) ^{-1} \)
reflection of \( \mathbf{x} \) w.r.t. \( \mathbf{e}_2\) axis
\(\Leftrightarrow (\mathbf{e}_1 \mathbf{m}_b) (\mathbf{e}_1^{-1} \mathbf{x} \mathbf{e}_1) (\mathbf{e}_1 \mathbf{m}_b) ^{-1} \)
\( \mathbf{e}_1 (a \mathbf{e}_1 + b \mathbf{e}_2) = a + b \mathbf{e}_{12}\)
\( \rightarrow \)homogeneous to the operator performing a rotation in geometric algebra
\( \mathbf{m}_b = (k+1) \mathbf{e}_1 + k \mathbf{e}_2, k\in \mathbb{N} \)
bijective digitized reflections
bijective digitized rotations
Input: any digitized reflection
Problem: find the "nearest" bijective digitized reflection
Approximation
digitized reflection \( \mathbf{m} \)
bijective approximation \( \widetilde{\mathbf{m}} \)
Composition of two bijective digitized reflections
\( \rightarrow \) bijective approximation of a digitized rotation
\( \hookrightarrow \) Approximate a Euclidean rotation of angle \( \theta\) from 2 bijective reflections
\( \hookrightarrow \) Constraint: angle between the 2 normal vectors is \( \frac{\theta}{2} \)
where \( \theta\) is the rotation angle
\( \bullet \) Given \( k_{\max} \) and \(\mathbf{B}_{k_{\max}} \) (bijective reflections)
\( \bullet \) loop over all bijective reflections \( \mathbf{m}_{1} \in \mathbf{B}_{k_{\max}} \)
\( \bullet \) Look for \( \mathbf{m}_{2} \) such that the relative angle between \(\mathbf{m}_{1} \) and \(\mathbf{m}_{2} \) is half the angle of rotation
\( \bullet \) Return the couple \( \mathbf{m}_{1},\mathbf{m}_{2} \) whose relative angle is the closest to \( \frac{\theta}{2} \)
bijective digitized reflections
bijective digitized rotations
approximation
\( \hookrightarrow \) No double points
\( \hookrightarrow \) No holes
Original
Bijective Approximation of a digitized rotation
Inverse transformation
\( \hookrightarrow \) Convexity, topology not preserved compared to backward transformation!
\( \hookrightarrow \) more bijective digitized rotations
\( \hookrightarrow \) simple method
\( \hookrightarrow \) can be extended...
\( \hookrightarrow \) For subset of \( \mathbb{Z}^2 \) : preservation of the topology, convexity... ?
\( \hookrightarrow \) Bijectivity of digitized reflections in the space
\( \hookrightarrow \) comparison with the main methods to perform bijective rotations like
quasi-shears, FFT, rotations from reflections with digital lines (Andres), ...
\( \mathbb{Z}^2 \)
\( 20 \times 20 \) points of \(\mathbb{Z}^2\)
\( 10 \times 10 \) points of \(\mathbb{Z}^2\)
New bijective digitized reflections
\( \hookrightarrow \) Preservation of topology (simple points by Couprie, Ngo)?
\( \hookrightarrow \) Preservation of the convexity (IsFullyConvex by Lachaud)?
\( \hookrightarrow \) Preservation of the area?