Stéphane Breuils, Yukiko Kenmochi, Akihiro Sugimoto
\( {\color{green}\mathbf{y}} = -{\color{blue}\mathbf{m}} {\color{red}\mathbf{x}} {\color{blue}\mathbf{m}^{-1}} \)
\( {\color{green}\mathbf{y}} = \mathbf{Q} {\color{red}\mathbf{x}} \mathbf{Q}^{-1} \)
\( \mathbf{Q} = \color{blue}\mathbf{m}\mathbf{n} \)
\( \mathbf{Q} = \color{blue}\mathbf{m}\mathbf{n} = \cos{\frac{\theta}{2}} + \sin{\frac{\theta}{2}} \mathbf{e}_{12} \) \( (2D)\)
\( \bullet \) defined for any dimension
\( \bullet \) generic and easy to manipulate
Knowing \(\mathbf{m} \) normal vector to the line of reflection, reflection of \( \mathbf{x} \) :
\( \mathbf{y} = -\mathbf{m} \mathbf{x} \mathbf{m}^{-1} \)
Product \(\mathbf{m} \mathbf{n} \), rotation of \( \mathbf{x} \) :
New bijective rotations from bijective digitized reflections
\( \bullet \) Reflections \( \mathcal{U}^{m} \)
\( \bullet \) Digitized operator \( \mathcal{D} \)
\( \bullet \) Digitized reflections \( \mathcal{R}^{\mathbf{m}}\)
\( \bullet \) Equivalent to the Voronoi cell definition
\( \mathcal{C}_{1}(\mathbf{0})\)
\( \mathcal{C}_{1}(\mathbf{t})\)
\( \mathbf{t} = 3 \mathbf{e}_1 + 2 \mathbf{e}_2\)
\( \bullet \) Equivalent to the Voronoi cell definition
\(\mathcal{C}_{\frac{\mathbf{m}}{||\mathbf{m} || }} (\mathbf{0}) \)
\( \bullet \) Definition
\( \bullet \) Includes
\( \hookrightarrow \) Cell reflection
\( \hookrightarrow \) Cell translation, rotation
\( \bullet \) Set of remainder
\( \bullet \) Bijectivity condition
\( \mathcal{C}_{\frac{\mathbf{m}}{||\mathbf{m} ||}}(\mathbf{0}) \)
\( \mathcal{C}_{1}(\mathbf{0}) \)
\( m_b \) : digitized bijective reflection
\(\Leftrightarrow \) \(-\mathbf{e}_1 m_b \mathbf{e}_1^{-1}\) is also a bijective digitized reflection
\(\Leftrightarrow \) \(-\mathbf{e}_1 (a \mathbf{e}_1 + b \mathbf{e}_1) \mathbf{e}_1^{-1} \) is also a bijective digitized reflection
\(\Leftrightarrow \mathbf{e}_1 \mathbf{m}_b \mathbf{e}_1^{-1} \mathbf{x} \mathbf{e}_1 \mathbf{m}_b^{-1} \mathbf{e}_1^{-1} \)
\(\Leftrightarrow (\mathbf{e}_1 \mathbf{m}_b) (\mathbf{e}_1^{-1} \mathbf{x} \mathbf{e}_1) (\mathbf{e}_1 \mathbf{m}_b) ^{-1} \)
reflection of \( \mathbf{x} \) w.r.t. \( \mathbf{e}_2\) axis
\(\Leftrightarrow (\mathbf{e}_1 \mathbf{m}_b) (\mathbf{e}_1^{-1} \mathbf{x} \mathbf{e}_1) (\mathbf{e}_1 \mathbf{m}_b) ^{-1} \)
\( \mathbf{e}_1 (a \mathbf{e}_1 + b \mathbf{e}_2) = a + b \mathbf{e}_{12}\)
\( \rightarrow \)homogeneous to the operator performing a rotation in geometric algebra
\( \mathbf{e}_1 (a \mathbf{e}_1 + b \mathbf{e}_2) = a + b \mathbf{e}_{12}\)
\( \rightarrow \)homogeneous to the operator performing a rotation in geometric algebra
\( a = (k+1) ; b = k\)
\( \mathbf{m}_b = (k+1) \mathbf{e}_1 + k \mathbf{e}_2, k\in \mathbb{N} \)
bijective digitized reflections
bijective digitized rotations
Input: any digitized reflection
Problem: find the "nearest" bijective digitized reflection
Approximation
digitized reflection \( \mathbf{m} \)
bijective approximation \( \widetilde{\mathbf{m}} \)
Composition of two bijective digitized reflections \( \rightarrow \) bijective approximation of a digitized rotation
\( \hookrightarrow \) Approximate a Euclidean rotation of angle \( \theta\) from 2 bijective reflections
\( \bullet \) Constraint: angle between the 2 normal vectors is \( \frac{\theta}{2} \)
where \( \theta\) is the rotation angle
\( \bullet \) Given \( k_{\max} \) and \(\mathbf{B}_{k_{\max}} \) (bijective reflections)
\( \bullet \) loop over all bijective reflections \( \mathbf{m}_{1} \in \mathbf{B}_{k_{\max}} \)
\( \bullet \) Look for \( \mathbf{m}_{2} \) such that the relative angle between \(\mathbf{m}_{1} \) and \(\mathbf{m}_{2} \) is half the angle of rotation
\( \bullet \) Return the couple \( \mathbf{m}_{1},\mathbf{m}_{2} \) whose relative angle is the closest to \( \frac{\theta}{2} \)
bijective digitized reflections
bijective digitized rotations
approximation
\( \hookrightarrow \) No double points
\( \hookrightarrow \) No holes
\( \hookrightarrow \) more bijective digitized rotations
\( \hookrightarrow \) simple method
\( \hookrightarrow \) can be extended...
\( \hookrightarrow \) comparison with the main methods to perform bijective rotations like
quasi-shears, FFT, rotations from reflections with digital lines (Andres), ...